Protection and Automation System of a HV/ MV Substation

Sami Andraos & Roy Moukarzel

MATELEC
PROTECTION AND AUTOMATION SYSTEM OF A HV/ MV SUBSTATION

Outline

Briefing of Matelec’s Substation Automation Evolution

Overview of Matelec’s Substation Protection and Automation Solution

Process Steps of S/S Protection & Automation System

Case study of key Project (Mobile Substation)

Why Matelec?

Application & real-time demonstration of a Mobile S/S
1987: Engineering & Contracting Division

The Engineering and Contracting division was established in 1987 in Ghorfine/Lebanon and is dedicated to the realization of complex HV, MV and LV projects.
PROTECTION AND AUTOMATION SYSTEM OF A HV/ MV SUBSTATION

Briefing of Matelec’s Substation Automation Evolution
(From Conventional to complete automated system)

1987-1995

The Substation automation Solution provided by Matelec was based on the following:

- Conventional Control System including push buttons and discrepancy switches
- Protection Panels using Electromechanical relays.
- Marshalling of signals to the dispatching through wiring.
- No Communication or SCADA Systems
Briefing of Matelec’s Substation Automation Evolution
(From Conventional to complete automated system)

1996-2000

According to Customer’s requirements Scada system is required in parallel with conventional system:

- Conventional Control System including push buttons and discrepancy switches
- Protection Panels Engineering & Manufacturing with Intelligent Devices.
- Scada system in partnership with other providers based on proprietary protocols and under the responsibility of the supplier.
Utilities became more focused on Scada system. Matelec invested in implementing a complete automated system:

- Bay Control Unit with/without a parallel Conventional Control System for full backup
- Protection Panels Engineering & Manufacturing with Intelligent Devices.
- Complete standard solution with in-house engineering and building of the SCADA systems.
Outline

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Briefing of Matelec’s Substation Automation Evolution</td>
<td></td>
</tr>
<tr>
<td>Overview of Matelec’s Substation Protection and Automation Solution</td>
<td></td>
</tr>
<tr>
<td>Process Steps of S/S Protection & Automation System</td>
<td></td>
</tr>
<tr>
<td>Case study of key Project (Mobile Substation)</td>
<td></td>
</tr>
<tr>
<td>Why Matelec ?</td>
<td></td>
</tr>
<tr>
<td>Application & real-time demonstration of a Mobile S/S</td>
<td></td>
</tr>
</tbody>
</table>
Substation Automation Solution

LEVEL 3 - Interface To Dispatch Center
- Telephone Modem, Radio Modem, Multiplexer, Power Line Carrier,......
- SCADA Protocol: IEC 60870-5-101/104, DNP 3.0,

LEVEL 2 - Station Level
- Communication Network: Point to Point Fiber, Copper Ethernet......
- Hubs, Switches
- Communication Processor: PC, RTU,
- HMI: PC with Graphic Screen or Touch Screen,...
- SCADA Protocol: IEC61850, IEC 60870-5-101/104, DNP 3.0, MODBUS.....

LEVEL 1 - Bay Level
- IEDS: Protection Relays, Control Relays, Meters,

LEVEL 0 - Process Level
- Breakers, Disconnectors, Switches, Power Transformers, VTs, CTs,
Matelec’s flexible solution for a Substation Automation System

- Different Control
- Different Bays
- Voltage Levels
- Substation Type
- Busbar Topology
- Different Systems
- Different Protocols
- Relays Partners
- Scada Partners

MATELEC
Busbar Topology

- Single Busbar
- Single Bus with bus tie CB
- 1½ Breaker Stations
- Double Busbar
- Double Busbar with bus tie CB
Substation Type

Conventional SS

GIS SS

Mobile SS
Voltage Levels

Matelec Solution

From 10kV up to 400kV
PROTECTION AND AUTOMATION SYSTEM OF A HV/MV SUBSTATION

Different Bay Types

- Line Feeder
- Cable Feeder
- Transformer
- Busbar
- Coupler
- MV Switchgear
- Self
- Capacitor

Matelec Solution
Different Control Types

Local Substation Operator

Control Center

Gateway

Conventional Mimic

Bay Control Unit

Breaker

Disconnector
Our Main SCADA Partners

- MATELEC
- MICROSCADA PRO
- GE POWER
- SICAM PAS
- ZENON
- VIJEO CICTE
PROTECTION AND AUTOMATION SYSTEM OF A HV/MV SUBSTATION

Our Scada Equipments Provider

MATELEC

ADVANTECH

RUGGEDCOM

MEINBERG

VIEW SONIC, LG, HP,...
Different Scada Architectures (Simple System)
Different Scada Architectures (Redundant System)
Different Protocols Used

- MODBUS
- DNP
- LON
- PROFIBUS
- 60870-5-101
- 60870-5-101/4
- 60870-5-103
- 61850

 Functions:
- Central Functions
- Station Gateway
- HM I

Protocols:
- Protection 1
- Protection 2
- Protection & Control

Process interfaces:
- Process interface
Advantages of the IEC61850 Protocol

<table>
<thead>
<tr>
<th>Interoperability</th>
<th>The ability for IED’s from one or several manufacturer to exchange information and to use that information for correct execution of specific functions.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When extensions are required, the protocol facilitate the integration of new relays within the existing system</td>
</tr>
<tr>
<td></td>
<td>Matelec have a big experience in integrating several IEDs from different manufacturers in any substation automation system</td>
</tr>
</tbody>
</table>

| Long term stability | The standard is for future proof, i.e. it is able to follow the progress in communication technology as well as evolving system requirements |

| Free configuration | Provides support of Engineering of the whole substation through standardized configuration language based on XML |
Typical Reference List

Conventional Control Solution:
- Lebanon: ARAMOUN 220/150/20kV GIS S/S
- Lebanon: Beirut Central District 220/66/20kV GIS S/S

Combined (Conventional & Integrated) Control Solution:
- Syria: Kaboun 230/66/20kV GIS S/S
- Syria: Adra 230/66/20kV AIS S/S
- Syria: Banias 230/66/20kV GIS S/S

Full Integrated Solution:
- Senegal: Kounoune 90/15kV AIS S/S
- Nigeria: Ganmo 330/132/33kV AIS S/S
- Algeria: Ahmer El Ain 220/60kV AIS S/S
- Algeria: Cheffia 400/220kV AIS S/S
- Algeria: Mekera 60/10kV GIS S/S
- Algeria: 60/30, 60/10 & 90-60/30kV Mobile S/S
Outline

- Briefing of Matelec’s Substation Automation Evolution
- Overview of Matelec’s Substation Protection and Automation Solution
- Process Steps of S/S Protection & Automation System
- Case study of key Project (Mobile Substation)
- Why Matelec?
- Application & real-time demonstration of a Mobile S/S
Process Steps of S/S Protection & Automation System

Configuration & Parameterisation

Complete Test

Commissioning

Contract

Documents For Approval

Testing & Simulation

FT/FAT

ST/SAT

After Sales Support

MOM

Scada Architecture

MOM

Single Line Diagram
PROTECTION AND AUTOMATION SYSTEM OF A HV/MV SUBSTATION

Documents For Approval

- Single Line Diagram
- Scada Architecture
- Interlock
- Scada Specifications
- Scada Overview
- Scada I/O List

26
PROTECTION AND AUTOMATION SYSTEM OF A HV/MV SUBSTATION

Engineering

IED Configuration

System Testing

Scada Configuration

Configuration

Setting

Simulate

Database

HMI
PROTECTION AND AUTOMATION SYSTEM OF A HV/ MV SUBSTATION

Engineering

IED CONFIGURATION
- Complete customized configuration of the IED functionality based on the clients specific requirements and using the IED related software tool (PCM from ABB, DIGSI from Siemens...)
- Parameterization and basic configuration of the protection and control relays settings based on the clients standard requirements.

SCADA CONFIGURATION
- Database Engineering based on the clients approved documents (Specially the I/O List) and using the SCADA tools (SCL files for IEC61850, Modbus Table for Modbus relays...)
- Drawing and configuration of the Substation related HMI screens based on the approved documents, and according to the substation functionality.

SYSTEM TESTING
Simulation and validation of the system’s configuration through complete testing based on the “Testing Protocols” procedures, and using many testing tools ex:
- SIM600: Switching equipment simulator for switchgear operation
- OMICROM/ISA: For the injection of analogue signals and testing of protections and analogue readings.
- ETHEREAL: For monitoring of the network status and messages with LAN based protocols (Specially for IEC61850)
- COMPROTWARE Test tool: For the simulation and supervision of different substation protocols, mainly IEC101 simulation (Dispatching center)
Minutes of Meeting

PROTECTION AND AUTOMATION SYSTEM OF A HV/ MV SUBSTATION

COMMISSIONING & TESTING (FAT/ SAT)

IED COMMISSIONING

PROTECTION

BCU

Minutes of Meeting

SCADA COMMISSIONING

HMI

EVENT LIST
IED COMMISSIONING
- Complete test for BCU (Control, Interlocking, Measurement....)
- Complete test of Protections (Distance Protection, Transformer Differential Protection, Overcurrent...)

SCADA COMMISSIONING
- Complete testing of the SCADA System including Commands, Analogue reading,
- Events and Alarms generation, printouts on the Dot Matrix printer based on the I/O list document

- All the tests are implemented based on “Testing Protocols” procedures.
- The test is concluded by signing a Minutes Of Meeting with the client.
Outline

1. Briefing of Matelec’s Substation Automation Evolution
2. Overview of Matelec’s Substation Protection and Automation Solution
4. Case study of key Project (Mobile Substation)
5. Why Matelec?
6. Application & real-time demonstration of a Mobile S/S
Single Line Diagram
Scada Single Line Screen

Cabine Mobile 60/30 kV

MPOWERING Energy Conference
HV/MV Mobile Substation

SUPERVISION
SERVICE AUX CC
SERVICE AUX CA
MESURES
TENDANCES

2:44 AM 7/19/2011 Cabine Mobile 60/30kV
Scada Bays’ Screens

The 60/30kV Mobile substation consists of the following bays:

- 1x Line Bay 60kV
- 1x Transformer Bay 60/30kV
- 1x Incoming Switchgear 30kV
- 4x Outgoing Switchgears 30kV
Scada Supervision Screen
PROTECTION AND AUTOMATION SYSTEM OF A HV/MV SUBSTATION

PROTECTION & CONTROL PANEL - LINE 60kV

The Protection & Control Panel for 60kV Line Bay consists of:

- Bay Control Unit: GE-F650 (M,CTRL)
- Distance Protection: GE-D60 (21,51,27,79,67N)
- Back UP Protection: GE-MIFIIP (51,51N)
- Converter Modbus: RUGGED-RMC30
- Switch: RUGGED-RSG2100
PROTECTION PANEL - TR 60/30kV

The Protection Panel for Transformer 60/30kV Bay consists of:

- **TR Diff. Protection**: GE-T60 (87T)
- **Volt. Regulator**: MR-TAPCON260 (90)
- **Frequency Relay**: GE-F35 (81)
- **HV Phase O/C**: GE-MIFIIP (51,49)
- **MV Phase O/C**: GE-MIFIIP (51,49)
- **MV Neutral O/C**: GE-MIFIIN (51N)
- **Sensitive Earth Fault**: GE-MIFIIN (51N)
- **Tank Protection**: GE-MIFIIN (51N)
- **Converter Modbus**: RUGGED-RMC30
- **Switch**: RUGGED-RSG2100
PROTECTION AND AUTOMATION SYSTEM OF A HV/ MV SUBSTATION

30kV SWITCHGEARS

The 30kV Switchgears consists of:

- Bay Unit (Control & Protection): GE-F650 (BCU,M,51,51N,27,79,...)
The Common Bay consists of:

- **Bay Unit:** GE-F650
- **Central Unit:** GE-CCU1000
- **GPS:** Meinberg-M300
- **Modem:** Westermo-TD36
- **Switch:** RUGGED-RSG2100
The Scada Panel consists of:

- **Industrial PC:** Advantech-UNO
- **Dot Matrix Printer:** Epson-LQ300+
- **Industrial Screen:** Advantech-FPM
- **Modem:** Westermo-TD36
- **Output Module:** Advantech-ADAM
Outline

- Briefing of Matelec’s Substation Automation Evolution
- Overview of Matelec’s Substation Protection and Automation Solution
- Process Steps of S/S Protection & Automation System
- Case study of key Project (Mobile Substation)
- Why Matelec?
- Application & real-time demonstration of a Mobile S/S
Why MATELEC

- A Complete System Solution Supplier
- Flexible & Customized Solution from Conventional to the latest, full integrated system based on IEC61850
- Experience Over A Broad Range of Applications and not limited to specific suppliers
- Complete system engineering in Matelec & Full real time factory test allowing to reduce duration of site intervention
- Site Testing & Commissioning is Plug & Play and limited to protection testing and parameters tuning according to the customer’s requirement
- Customer Training
- After Sales Support

Dedicated to bringing the best Automation solutions to our customers
Thank you for your attention!
Outline

<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Briefing of Matelec’s Substation Automation Evolution</td>
</tr>
<tr>
<td>Overview of Matelec’s Substation Protection and Automation Solution</td>
</tr>
<tr>
<td>Process Steps of S/S Protection & Automation System</td>
</tr>
<tr>
<td>Case study of key Project (Mobile Substation)</td>
</tr>
<tr>
<td>Why Matelec?</td>
</tr>
<tr>
<td>Application & real-time demonstration of a Mobile S/S</td>
</tr>
</tbody>
</table>

PROTECTION AND AUTOMATION SYSTEM OF A HV/ MV SUBSTATION
Time for Application and real-time demonstration of a Mobile Substation!